2015-12-1

From Bitnami MediaWiki
Revision as of 14:21, 2 September 2023 by RobertRogo (talk | contribs)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Problema:} Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:[-1,1]\to \mathbb{R}} o funcție crescătoare, derivabilă pe Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [-1,1]} cu . Să se arate ca exista cel puțin un punct , cu proprietatea că

.

Failed to parse (unknown function "\c"): {\displaystyle Solu\c t ie:\ (Robert \ Rogozsan)} Dacă , cum e crescătoare, vom avea că , deci . Atunci luăm arbitrar și concluzia este verificată. Analog pentru (luăm din ).

Failed to parse (unknown function "\c"): {\displaystyle Observa\c t ie:} În funcție de cum e față de , concluzia se verifică pentru (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1,0)} ). Nu avem nevoie de faptul că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} e derivabilă, nici de Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(0) \neq 0} .