P:1795

From Bitnami MediaWiki
Revision as of 03:18, 14 September 2025 by Andrei.Horvat (talk | contribs)

P:1795 (Gheorghe Boroica)

Numărul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 42} se scrie ca și produsul a Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2025} numere naturale. Determinați suma minimă a tuturor factorilor acestui produs.

Soluție

Sunt posibile următoarele scrieri ale numărului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 42} ca și produs de Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2025} de factori: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 42 = 2 \cdot 3 \cdot 7 \cdot \stackrel{1\cdot 1 \cdot \ldots \cdot 1}{2022}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 42 = 6 \cdot 7 \cdot \stackrel{1\cdot 1 \cdot \ldots \cdot 1}{2023}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 42 = 2 \cdot 21 \cdot \stackrel{1\cdot 1 \cdot \ldots \cdot 1}{2023}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 42 = 3 \cdot 14 \cdot \stackrel{1\cdot 1 \cdot \ldots \cdot 1}{2023}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 42 = 42 \cdot \stackrel{1\cdot 1 \cdot \ldots \cdot 1}{2024}} Pentru fiecare dintre aceste produse se obțin următoarele sume ale factorilor lor: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_1 = 2 + 3 + 7 + \stackrel{1+ 1 + \ldots + 1}{2022} = 12+2022 = 2034,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_2 = 6 + 7 + \stackrel{1+ 1 + \ldots + 1}{2023} = 13+2023 = 2036,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_3 = 2 + 21 + \stackrel{1+ 1 + \ldots + 1}{2023} = 23+2023 = 2046,}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_5 = 42 + \stackrel{1+ 1 + \ldots + 1}{2024} = 42+2024 = 2066.}

În concluzie, suma minimă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2034} se obține pentru produsul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 42 = 2 \cdot 3 \cdot 7 \cdot \stackrel{1\cdot 1 \cdot \ldots \cdot 1}{2022}} .