Problema 26460 (Nicolae Mușuroia, Baia Mare)
Să se arate că dacă a, b, c sunt numere reale strict pozitive cu a + b + c = a b c {\displaystyle a+b+c=abc} , atunci ( 1 + a 2 ) ( 1 + b 2 ) ( 1 + c 2 ) ≥ 64 {\displaystyle (1+a^{2})(1+b^{2})(1+c^{2})\geq 64} .
Soluție.
Relația a + b + c = a b c {\displaystyle a+b+c=abc} se scrie 1 b c + 1 c a + 1 a b = 1 {\displaystyle {\frac {1}{bc}}+{\frac {1}{ca}}+{\frac {1}{ab}}=1} . Avem: 1 + a 2 = a 2 ( 1 + 1 a 2 ) = a 2 ( 1 b c + 1 c a + 1 a b + 1 a 2 ) = {\displaystyle 1+a^{2}=a^{2}\left(1+{\frac {1}{a^{2}}}\right)=a^{2}\left({\frac {1}{bc}}+{\frac {1}{ca}}+{\frac {1}{ab}}+{\frac {1}{a^{2}}}\right)=} = a 2 ( 1 a + 1 b ) ( 1 b + 1 c ) = ( a + b ) ( a + c ) b c ≥ 4 a b c . {\displaystyle =a^{2}\left({\frac {1}{a}}+{\frac {1}{b}}\right)\left({\frac {1}{b}}+{\frac {1}{c}}\right)={\frac {(a+b)(a+c)}{\sqrt {bc}}}\geq {\frac {4a}{\sqrt {bc}}}.}
Deci ( 1 + a 2 ) ( 1 + b 2 ) ( 1 + c 2 ) ≥ 4 a b c ⋅ 4 b a c ⋅ 4 c a b = 64 {\displaystyle (1+a^{2})(1+b^{2})(1+c^{2})\geq {\frac {4a}{\sqrt {bc}}}\cdot {\frac {4b}{\sqrt {ac}}}\cdot {\frac {4c}{\sqrt {ab}}}=64} .