14682

From Bitnami MediaWiki
Revision as of 14:57, 16 January 2024 by Andreica Dragos (talk | contribs)

14682 (Cristina Vijdeluc și Mihai Vijdeluc)

Enunț: Se consideră triunghiul ABC în care Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m(\angle A) = 2 \cdot m(\angle B) + 30^\circ} . Punctul M este situat pe segmentul (BC) astfel încât AM = AC.

Dacă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m(\angle MAC) = 2 \cdot m(\angle MAB)} , arătați că BM = MC.


Soluție: Notăm Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = m(\angle ABC)} și . Avem și , din ipoteză. Atunci de unde . Pe de altă parte avem ca unghi exterior . Cum AM = AC vom avea Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m(\angle ACM) = \frac {5a}{3} + 10^\circ} . Acum în Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \triangle ABC} avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a + 2a + 30^\circ + \frac{5a}{3} + 10^\circ = 180^\circ} , de unde Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = 30^\circ} , apoi Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 30^\circ} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m(\angle AMC) = 60^\circ} . Rezultă acum că triunghiul ABM este isoscel, de unde BM = AM, iar Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \triangle AMC} (1) este echilateral AM = AC = CM,(2). Din (1) și (2) rezultă BM = MC.