27020

From Bitnami MediaWiki
Revision as of 17:39, 18 October 2023 by Nagy Lenard (talk | contribs)

27020 (Gheorghe Szöllösy)

Să se calculeze suma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\left\lfloor\frac{n}{2}\right.} \frac{1}{4^k \cdot (k!)^2 \cdot (n-2k)!}, \quad n \geq 1 }

Soluție:

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n } coeficientul lui din rezolvarea lui

Avem , iar pe de altă parte,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} C_n^k C_(n-k)^k \cdot \left.\frac{1}{4^k}\right. = n! \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{(k!)^2 (n-k)! 4^k},}

deci suma este egală cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{(2n!}{2^n(n!)^3}\right. .}