27020
27020 (Gheorghe Szöllösy)
Să se calculeze suma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{4^k \cdot (k!)^2 \cdot (n-2k)!}, \quad n \geq 1 }
Soluție:
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n } coeficientul lui Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^n } din rezolvarea lui
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X) = \left(X + \left\lfloor\frac{1}{2}\right\rfloor\right)^{2n} = \left(X(1+X) + \left\lfloor\frac{1}{4}\right\rfloor\right)^n = \sum_{k=0}^n C_n^k X^{(n-k)} \left(\frac{1}{4^k}\right).}
Avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n = \left(\frac{1}{2^n}\right) C_2n^n } , iar pe de altă parte, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n = C_n^0 \cdot C_n^0 + C_n^1 \cdot C_(n-1)^1 \left.\frac{1}{4}\right. + C_n^2 \cdot C_(n-2)^1\left(\frac{1}{4^2}\right) + ... = } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} C_n^k C_(n-k)^k \cdot \left.\frac{1}{4^k}\right. = n! \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{(k!)^2 (n-k)! 4^k},}