1956 - Siruri 2

From Bitnami MediaWiki

Sursa: [1]

Cerinţa

Fibonacci, un celebru matematician italian din Evul Mediu, a descoperit un șir de numere naturale cu multiple aplicații, șir ce-i poartă numele:

Fibonacci(n)={1Fibonacci(n−1)+Fibonacci(n−2)dacă n=1 sau n=2 dacă n>2 Fascinat de șirul lui Fibonacci, și mai ales aplicațiile acestui șir în natură, Iccanobif, un matematician în devenire, a creat un șir si el un care-i poartă numele:

Iccanobif(n)={1răsturnat(Iccanobif(n−1))+răsturnat(Iccanobif(n−2))dacă n=1 sau n=2 dacă n>2 Obținându-se astfel șirurile:

Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, … Iccanobif: 1, 1, 2, 3, 5, 8, 13, 39, 124, 514, 836, … Iccanobif, se întreabă acum, ce număr are mai mulți divizori numere naturale: al n-lea termen din șirul Fibonacci sau al n-lea termen din șirul său.


Scrieți un program care să citească un număr natural n și să afișeze:

a) al n-lea termen din șirul lui Fibonacci și numărul său de divizori b) al n-lea termen din șirul lui Iccanobif și numărul său de divizori

Date de intrare

Programul conține pe prima linie un număr natural p. Pentru toate testele de intrare, numărul p poate avea doar valoarea 1 sau valoarea 2. Pe linia a doua a fișierului se găsește un număr natural n.

Date de ieșire

Dacă valoarea lui p este 1, se va rezolva numai punctul a) din cerințe. În acest caz,programul va scrie al n-lea termen din șirul lui Fibonacci și numărul său de divizori.

Dacă valoarea lui p este 2, se va rezolva numai punctul b) din cerințe. În acest caz, programul va scrie al n-lea termen din șirul lui Iccanobif și numărul său de divizori.

Dacă datele sunt introduse corect, programul va rula.

În cazul în care datele nu respectă restricțiile, se va afișa pe ecran: "Datele nu corespund restricțiilor impuse.".

Restricţii şi precizări

1 ≤ n ≤ 50

Pentru rezolvarea corectă a primei cerinţe se acordă 50% din punctaj, iar pentru cerința a doua se acordă 50% din punctaj.

Exemplul 1

Intrare
1
8
Ieșire
21 4


Rezolvare

<syntaxhighlight lang="python" line>

  1. 4273

def patrate_perfecte(n):

   patrate = []
   i = 1
   while len(patrate) < n:
       patrat = i * i
       patrate.append(patrat)
       i += 1
   return patrate


def calculeaza(numbers):

   product = 1
   for number in numbers:
       product *= number
   return product


def validare_numar(n):

   if n < 1 or n > 10:
       return False
   return True


if __name__ == '__main__':

   n = int(input("Introduceți numărul n: "))
   if not validare_numar(n):
       print("Datele introduse nu corespund cerintelor.")
   else:
       squares = patrate_perfecte(n)
       product = calculeaza(squares)
       print("Datele introduse corespund cerintelor.")
       print(product)


</syntaxhighlight>