E:26460

From Bitnami MediaWiki
Revision as of 12:39, 16 January 2025 by Ionut (talk | contribs) (Created page with "'''Problema 26460 (Nicolae Mușuroia, Baia Mare)''' ''Să se arate că dacă a, b, c sunt numere reale strict pozitive cu <math>a + b + c = abc</math>, atunci <math>(1 + a^2)(1 + b^2)(1 + c^2) \geq 64</math>.'' '''Soluție.''' Relația <math>a + b + c = abc</math> se scrie <math>\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = 1</math>. Avem: <math> 1 + a^2 = a^2 \left( 1 + \frac{1}{a^2} \right) = a^2 \left( \frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} + \frac{1}{a^2} \righ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problema 26460 (Nicolae Mușuroia, Baia Mare)

Să se arate că dacă a, b, c sunt numere reale strict pozitive cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a + b + c = abc} , atunci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 + a^2)(1 + b^2)(1 + c^2) \geq 64} .

Soluție.

Relația se scrie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = 1} . Avem: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 + a^2 = a^2 \left( 1 + \frac{1}{a^2} \right) = a^2 \left( \frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} + \frac{1}{a^2} \right) = } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = a^2 \left( \frac{1}{a} + \frac{1}{b} \right) \left( \frac{1}{b} + \frac{1}{c} \right) = \frac{(a + b)(a + c)}{\sqrt{bc}} \geq \frac{4a}{\sqrt{bc}}. }

Deci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 + a^2)(1 + b^2)(1 + c^2) \geq \frac{4a}{\sqrt{bc}} \cdot \frac{4b}{\sqrt{ac}} \cdot \frac{4c}{\sqrt{ab}} = 64} .