14183 (Gheorghe Szőllőssy)
Să se calculeze suma S = ∑ k = 0 n ( k + 1 ) 2 C n k {\displaystyle S=\displaystyle \sum _{k=0}^{n}\left(k+1\right)^{2}C_{n}^{k}} .
Soluție Pentru orice număr natural p {\displaystyle p} considerăm S ( p , n ) = ∑ k = 0 n k p C n k {\displaystyle S(p,n)=\displaystyle \sum _{k=0}^{n}k^{p}C_{n}^{k}} . Pentru orice număr natural n {\displaystyle n} au loc egalitățile
S ( 0 , n ) = ∑ k = 0 n C n k = 2 n {\displaystyle S(0,n)=\displaystyle \sum _{k=0}^{n}C_{n}^{k}=2^{n}}
S ( 1 , n ) = ∑ k = 0 n k C n k = n 2 n − 1 {\displaystyle S(1,n)=\displaystyle \sum _{k=0}^{n}kC_{n}^{k}=n2^{n-1}}
S ( 2 , n ) = ∑ k = 0 n k 2 C n k = n ( n + 1 ) 2 n − 2 {\displaystyle S(2,n)=\displaystyle \sum _{k=0}^{n}k^{2}C_{n}^{k}=n\left(n+1\right)2^{n-2}} .
Cum S = ∑ k = 0 n ( k + 1 ) 2 C n k = ∑ k = 0 n k 2 C n k + 2 ⋅ ∑ k = 0 n k C n k + ∑ k = 0 n C n k {\displaystyle S=\displaystyle \sum _{k=0}^{n}\left(k+1\right)^{2}C_{n}^{k}=\displaystyle \sum _{k=0}^{n}k^{2}C_{n}^{k}+2\cdot \displaystyle \sum _{k=0}^{n}kC_{n}^{k}+\displaystyle \sum _{k=0}^{n}C_{n}^{k}} , se obține S = n ( n + 1 ) 2 n − 2 + 2 ⋅ n 2 n − 1 + 2 n {\displaystyle S=n\left(n+1\right)2^{n-2}+2\cdot n2^{n-1}+2^{n}} , deci S = ∑ k = 0 n ( k + 1 ) 2 C n k = 2 n − 2 ( n 2 + 5 n + 4 ) {\displaystyle S=\displaystyle \sum _{k=0}^{n}\left(k+1\right)^{2}C_{n}^{k}=2^{n-2}\left(n^{2}+5n+4\right)} .