S:L22.108

De la Universitas MediaWiki

S:L22.108. (Nicolae Mușuroia)

Fie cu ,  neinversabilă și , unde . Arătați că

Soluție.

Ipotezele și , cu , implică

Fie polinomul . Atunci, există pentru care
Cum , avem Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle f\left( i\right) = f\left( -i \right) = 0} , deci Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle x_1 = i} și Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle x_2 = -i} sunt rădăcini ale polinomului Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle f} .


Dacă Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle x_1, x_2, x_3 \in \mathbb{C}} sunt rădăcinile polinomului Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle f} , atunci din relațiile lui Viete avemNu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle x_1x_2x_3 = - \frac{\det(A)}{\det(B)} = - \alpha.} Se obține Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle x_3 = -\alpha} , ceea ce implicăNu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle f = \det(B) \cdot \left(X^2 + 1 \right) \cdot \left( X + \alpha \right).} AtunciNu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle f\left( 1 \right) = \det \left( A + B \right) = 2\left( \alpha +1 \right) \cdot \det(B)} șiNu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle f\left( -1 \right) = \det \left( A - B \right) = 2\left( \alpha - 1 \right) \cdot \det(B).} AvemNu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\alpha +1}{\alpha -1} = \frac{\dfrac{\det(A)}{\det(B)}+1}{\dfrac{\det(A)}{\det(B)}-1} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. }