S:L22.108

From Bitnami MediaWiki
Revision as of 08:07, 20 July 2024 by Andrei.Horvat (talk | contribs) (Pagină nouă: '''S:L22.108. (Nicolae Mușuroia)''' ''Fie <math>A, B \in \mathcal{M}_3 \left( \mathbb{R}\right)</math> cu <math>AB = BA</math>, <math>A^2+B^2</math> neinversabilă și <math>\det(A) = \alpha \cdot \det(B) \ne 0</math>, unde <math>\alpha \ne 1</math>. Arătați că <math display="block">\frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. </math>'' '''Soluție.''')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

S:L22.108. (Nicolae Mușuroia)

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A, B \in \mathcal{M}_3 \left( \mathbb{R}\right)} cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB = BA} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^2+B^2} neinversabilă și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \det(A) = \alpha \cdot \det(B) \ne 0} , unde Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \ne 1} . Arătați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. }

Soluție.