14683

From Bitnami MediaWiki
Revision as of 11:46, 16 January 2024 by Andreica Dragos (talk | contribs)

14683 (Răzvan Ceuca)

Fie matricele care verifică simultan condițiile:

  1. matricea este nilpotentă și matricea este inversabilă.
    Arătați că ecuația nu are soluții în .

Soluție:

Relația din enunț se mai poate scrie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^x - 2^y = 3^x - 3^y} . Presupunem că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \neq y} ; atunci x < y sau x > y.

Dacă x > y atunci relația se scrie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^y(2^{x-y} - 1) \cdot 3^y(3^{x-y} - 1)} , ceea ce este fals. Analog se procedează dacă x < y. În concluzie x = y.