\usepackage{MnSymbol}
27401 (Radu Pop, Baia Mare)
Fie n ∈ N {\displaystyle n\in \mathbb {N} } . Să se arate că
Soluție:
Fie x , y ∈ [ 0 , ∞ ) {\displaystyle x,y\in [0,\infty )} .Avem
Rezultă că ( n + 1 ) ( x + 1 ) ( y + 1 ) ( x + y + n 2 + n ) ≥ ( n + 2 ) 3 x y {\displaystyle (n+1)(x+1)(y+1)(x+y+n^{2}+n)\geq (n+2)^{3}xy} . Fie x = a − 1 ≥ 0 {\displaystyle x=a-1\geq 0} şi y = b − 1 ≥ 0 {\displaystyle y=b-1\geq 0} . Obţinem ( n + 1 ) a b ( a + b + n 2 + n − 2 ) ≥ ( n + 2 ) 3 ( a − 1 ) ( b − 1 ) {\displaystyle (n+1)ab(a+b+n^{2}+n-2)\geq (n+2)^{3}(a-1)(b-1)} , de unde ( n + 1 ) a b ( a + b ) + ( n 3 + 2 n 2 − n − 2 ) a b ≥ ( n + 2 ) 3 a b − ( n + 2 ) 3 ( a + b ) + ( n + 2 ) 3 {\displaystyle (n+1)ab(a+b)+(n^{3}+2n^{2}-n-2)ab\geq (n+2)^{3}ab-(n+2)^{3}(a+b)+(n+2)^{3}} , deci ( n + 1 ) a b ( a + b ) − ( 4 n 2 + 13 n + 10 ) a b + ( n + 2 ) 3 ( a + b ) ≥ ( n + 2 ) 3 {\displaystyle (n+1)ab(a+b)-(4n^{2}+13n+10)ab+(n+2)^{3}(a+b)\geq (n+2)^{3}} .