E:14892

From Bitnami MediaWiki
Revision as of 20:07, 20 December 2023 by Andrei.Horvat (talk | contribs)

E:14892 (Radu Pop & Ienuțaș Vasile)

Fie triunghiul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ABC} cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\left(\sphericalangle C\right) > 30^\circ} și punctele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} , , . Punctul este situat în interiorul triunghiului astfel încât și , punctul astfel încât cu , iar și astfel încât și .

  1. Arătați că
  2. Determinați măsura unghiului
  3. Arătați că

Soluție miniatura

Folosim notațiile și . Atunci și .

Cum , avem și , deci triunghiul este echilateral.

În triunghiul avem și , deci . Cum , rezultă că triunghiul este isoscel, cu .

Fie simetricul punctului față de punctul . Atunci triunghiul este dreptunghic, cu și , deci , deci patrulaterul este inscriptibil.

Notăm . Avem Failed to parse (unknown function "\widearc"): {\displaystyle m\left(\sphericalangle MPC\right) = m \left(\widearc{MC}\right) = 2\cdot m\left(\sphericalangle MBC\right) = 2\left(60^\circ - x\right)} . Atunci .

În triunghiul avem și , deci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\left(\sphericalangle PTC\right) = 180^\circ - \left(b+30^\circ + x\right) - \left(120^\circ -2b - 2x\right) = 30^\circ + b + x = m\left(\sphericalangle TCP\right)} . Cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sphericalangle TCP \equiv \sphericalangle PCT} , rezultă că triunghiul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle PCT} este isoscel, cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ CP \right] \equiv \left[TP\right]} .

Deci punctele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} sunt conciclice.

a) Avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\left(\sphericalangle RPT\right) = m \left(\widearc{RT}\right) = m\left(\widearc{RM}\right) + m\left(\widearc{MT}\right) = 2\cdot m\left(\sphericalangle MTR\right) + 2\cdot m\left(\sphericalangle MRT\right)} , deci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \cdot m\left(\sphericalangle RPT\right) = m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MTR\right).}

b) Avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\left(\sphericalangle ARM\right) = \frac{1}{2}\cdot m\left(\widearc{BM}\right) = m\left(\sphericalangle BCM\right) = 30^\circ.}