15698

From Bitnami MediaWiki
Revision as of 08:43, 19 December 2023 by Andrei.Horvat (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

E:15698 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)

Determinați numerele naturale , , pentru care

Soluție: Vom folosi proprietatea:

dacă suma pătratelor a două numere naturale este divizibilă cu , atunci fiecare număr este divizibil cu 3.

Această proprietate reiese din faptul că, dacă nu este divizibil cu , atunci .

Aici, deoarece este divizibil cu , iar și nu sunt divizibile cu , reiese că și . Dacă sau , atunci există , pentru care și/sau , iar sau .

Rezultă , ceea ce implică , cu .

Relația devine , ceea ce, ca mai sus, duce la , , , cu

, iar sau .

Repetând raționamentul obținem un șir nesfârșit de numere naturale sau un șir nesfârșit de numere naturale , ceea ce este imposibil. Astfel, presupunerea a ≠ 0 sau b ≠ 0 este falsă.

Rămâne soluția .

Observație. Ideea folosită în rezolvarea de mai sus pentru a arăta că reprezintă metoda coborârii infinite.