27020
27020 (Gheorghe Szöllösy)
Să se calculeze suma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{4^k \cdot (k!)^2 \cdot (n-2k)!}, \quad n \geq 1 }
Soluție:
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n } coeficientul lui Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^n } din rezolvarea lui <math> P(X) = (X + \left[\dfrac{1}{2}\right])^2n = (X(1+X) + [\dfrac{1}{4}\right])^n = \sum_{k=0}^n C_n^k X^(n-k) \left[\dfrac{1}{4^k}\right].