15685

From Bitnami MediaWiki
Revision as of 05:05, 12 December 2024 by Andrei.Horvat (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

E:15685 (Cristina Vijdeliuc și Mihai Vijdeliuc)

Se consideră triunghiul dreptunghic , cu și . Punctul aparține laturii astfel încât , punctul este mijlocul segmentului , iar punctul aparține laturii astfel încât . Arătați că .

Soluție

Deoarece este mediana în triunghiul dreptunghic avem . Din rezultă că este isoscel și, cum , este bisectoarea unghiului . Cum și obținem , de unde .

Pe de altă parte este unghi exterior triunghiului și atunci .

Din și deducem că este bisectoarea unghiului .


Din și rezultă că este echilateral și, cum , deducem că este mijlocul segmentului , deci .

Din este dreptunghic și obținem .

Cum , din și rezultă , adică este isoscel. De aici și din rezultă .