S:L22.108

From Bitnami MediaWiki
Revision as of 08:29, 20 July 2024 by Andrei.Horvat (talk | contribs)

S:L22.108. (Nicolae Mușuroia)

Fie cu ,  neinversabilă și , unde . Arătați că

Soluție.

Ipotezele și , cu , implică

Fie polinomul . Atunci, există Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m,n \in \mathbb{R}} pentru careFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( x\right) = \det\left(B\right) \cdot x^3 + mx^2 + nx +\det(A), \forall x\in \mathbb{C}.} Cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( i\right) \cdot f\left( -i \right)=0} , avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( i\right) = f\left( -i \right) = 0} , deci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1 = i} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2 = -i} sunt rădăcini ale polinomului .

Dacă sunt rădăcinile polinomului , atunci din relațiile lui Viete avem

Se obține , ceea ce implică