15678: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
 
Line 1: Line 1:
'''15678 (Cristina Vijdeluc și Mihai Vijdeluc)'''
'''15678 (Cristina Vijdeluc și Mihai Vijdeluc)'''


''Aflați toate numerele de forma ''<math>\overline{abcd}</math>''pentru care<math display="block">\overline{abcd} = 2021+5(a-c+b-d+1).</math>
''Aflați toate numerele de forma ''<math>\overline{abcd}</math> ''pentru care<math display="block">\overline{abcd} = 2021+5(a-c+b-d+1).</math>'''Soluție:'''


'''Soluție:'''


Ultima cifră numărului <math>5(a-c+b-d+1)</math> poate fi <math>0</math> sau <math>5</math>. Atunci ultima cifră a numărului <math>2021+5(a-c+b-d+1)</math> poate fi <math>1</math> sau <math>6</math>,de unde deducem că <math>d=1</math> sau <math>d=6</math>.
Ultima cifră numărului <math>5(a-c+b-d+1)</math> poate fi <math>0</math> sau <math>5</math>. Atunci ultima cifră a numărului <math>2021+5(a-c+b-d+1)</math> poate fi <math>1</math> sau <math>6</math>, de unde deducem că <math>d=1</math> sau <math>d=6</math>.


'''1.''' Pentru <math>d=1</math> relația devine <math>\overline{abcd} = 2021+5(a-c+b)</math>. Deoarece <math>a-c+b \le 18</math> avem <math>2021+5(a-c+b) \le 2111</math> și, cum <math>\overline{abcd}= 2021+5(a-c+b)</math>, obținem <math>a \le 2</math>.  
'''1.''' Pentru <math>d=1</math> relația devine <math>\overline{abcd} = 2021+5(a-c+b)</math>. Deoarece <math>a-c+b \le 18</math> avem <math>2021+5(a-c+b) \le 2111</math> și, cum <math>\overline{abcd}= 2021+5(a-c+b)</math>, obținem <math>a \le 2</math>.  

Latest revision as of 10:42, 16 January 2024

15678 (Cristina Vijdeluc și Mihai Vijdeluc)

Aflați toate numerele de forma pentru care

Soluție:


Ultima cifră numărului poate fi sau . Atunci ultima cifră a numărului poate fi sau , de unde deducem că sau .

1. Pentru relația devine . Deoarece avem și, cum , obținem .

Pentru relația dată devine sau , de unde .

De aici și . Numărul căutat este .

Pentru nu obținem nicio soluție.

2. Pentru relația dată devine . Deoarece avem și cum , obținem .

Pentru relația dată devine sau , de unde . De aici și . Numărul căutat este .

Pentru nu obținem nicio soluție.