E:14331: Difference between revisions
No edit summary |
No edit summary |
||
| Line 8: | Line 8: | ||
<br /> | <br /> | ||
Avem <math>n^4 + n^2 + 3 = n^2(n^2+1) + 3 </math>. Deoarece <math>n^2</math> și <math>n^2 + 1</math> sunt consecutive, produsul lor este un număr par și atunci <math> n^4 + n^2 + 3</math> este număr impar. Presupunem că există două numere prime, <math>a</math> și <math>b</math> astfel încât <math>n^4 + n^2 + 3 = a + b.</math> Din cele de mai sus unul dintre numere <math>a </math> și <math>b </math> trebuie să fie <math>2</math>. | |||
b</math> | |||
Alegem <math>a =2.</math> Atunci, <math display="block"> n^4 + n^2 + 3 = (n^2 - n + 1)(n^2 + n + 1).</math>Cum <math>(n^2 - n + 1)</math> și <math>(n^2 + n + 1)</math> sunt mai mari ca <math>1</math> în condițiile date, rezultă <math> | |||
b</math> nu este număr prim. Prin urmare, presupunerea făcută este falsă. | |||
Revision as of 07:40, 16 January 2024
E:14.331 (Cristina Vijdeluc și Mihai Vijdeluc)
Fie un număr natural. Arătați că numărul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^4 + n^2 + 3 }
nu poate fi scris ca suma a doua numere prime.
Soluție.
Avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^4 + n^2 + 3 = n^2(n^2+1) + 3 } . Deoarece Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^2} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^2 + 1} sunt consecutive, produsul lor este un număr par și atunci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^4 + n^2 + 3} este număr impar. Presupunem că există două numere prime, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^4 + n^2 + 3 = a + b.} Din cele de mai sus unul dintre numere Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a } și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b } trebuie să fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} .
Alegem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a =2.} Atunci, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^4 + n^2 + 3 = (n^2 - n + 1)(n^2 + n + 1).} Cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n^2 - n + 1)} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n^2 + n + 1)} sunt mai mari ca Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} în condițiile date, rezultă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} nu este număr prim. Prin urmare, presupunerea făcută este falsă.