26713: Difference between revisions

From Bitnami MediaWiki
Pagină nouă: '''28354 (Radu Pop și Vasile Ienuțaș)''' <br /> ''<br />Se consideră șirul de numere reale <math>(x_n)_{n \geq 0}</math> și <math>(y_n)_{n \geq 0}</math> cu <math>x_n \geq 1</math>, <math>y_n \geq 1</math>, pentru orice <math>n \in \mathbb{N}</math>, și <math>\lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2</math>. Să se calculeze <math>\lim_{{n \to \infty}} x_n</math> și <math>\lim_{{n \to \infty}} y_n</math>.'' <br /> '''Soluție:''' <br /> <br /> Avem <math> 2 \leq x_n...
 
No edit summary
Line 1: Line 1:
'''28354 (Radu Pop și Vasile Ienuțaș)'''
'''26713 (Radu Pop și Vasile Ienuțaș)'''
<br />
<br />
''<br />Se consideră șirul de numere reale <math>(x_n)_{n \geq 0}</math> și <math>(y_n)_{n \geq 0}</math> cu <math>x_n \geq 1</math>, <math>y_n \geq 1</math>, pentru orice <math>n \in \mathbb{N}</math>, și <math>\lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2</math>. Să se calculeze <math>\lim_{{n \to \infty}} x_n</math> și <math>\lim_{{n \to \infty}} y_n</math>.''
''<br />Se consideră șirul de numere reale <math>(x_n)_{n \geq 0}</math> și <math>(y_n)_{n \geq 0}</math> cu <math>x_n \geq 1</math>, <math>y_n \geq 1</math>, pentru orice <math>n \in \mathbb{N}</math>, și <math>\lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2</math>. Să se calculeze <math>\lim_{{n \to \infty}} x_n</math> și <math>\lim_{{n \to \infty}} y_n</math>.''

Revision as of 03:07, 8 January 2024

26713 (Radu Pop și Vasile Ienuțaș)

Se consideră șirul de numere reale și cu , , pentru orice , și . Să se calculeze și .

Soluție:

Avem și cum , rezultă că . Cum și , obținem . Analog, .