28251: Difference between revisions
Pagină nouă: '''28251 (Trif Flaviu) ''' <br /> <br /> ''Fie'' <math>(n \geq 2)</math> ''un număr natural și'' <math> f: [0,1] \longrightarrow \mathbb{R} </math> ''o funcție continuă astfel încât'' <math>f(0) \geq 0</math> si <math>\int_{0}^{1} e^2f(x) dx = 1+\frac{2}{n^3}</math>. <br /> a) ''Dați un exemplu de o funcție f cu proprietățile din enunț''. <br /> b) ''Arătați că există'' <math> c \in [0,1] </math> astfel încât <math> f(c) = c^{n^{3}} - 1 </math>. '''Solu... |
No edit summary |
||
Line 1: | Line 1: | ||
'''28251 ( | '''28251 (Gheorghe Boroica) ''' | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
''Fie'' <math>(n \geq 2)</math> ''un număr natural și'' <math> f: [0,1] \longrightarrow \mathbb{R} </math> ''o funcție continuă astfel încât'' <math>f(0) \geq 0</math> | ''Fie'' <math>(n \geq 2)</math> ''un număr natural și'' <math> f: [0,1] \longrightarrow \mathbb{R} </math> ''o funcție continuă astfel încât'' <math>f(0) \geq 0</math> și <math>\int_{0}^{1} e^{2f(x)} dx = 1+\frac{2}{n^3}</math>. | ||
<br /> | <br /> | ||
a) ''Dați un exemplu de o funcție f cu proprietățile din enunț''. | a) ''Dați un exemplu de o funcție <math>f</math> cu proprietățile din enunț''. | ||
<br /> | <br /> | ||
b) ''Arătați că există'' <math> c \in [0,1] </math> astfel încât <math> f(c) = c^{n^{3}} - 1 | b) ''Arătați că există'' <math> c \in [0,1] </math> astfel încât <math> f(c) = c^{n^{3}} - 1 |
Revision as of 18:50, 7 January 2024
28251 (Gheorghe Boroica)
Fie un număr natural și o funcție continuă astfel încât și .
a) Dați un exemplu de o funcție cu proprietățile din enunț.
b) Arătați că există astfel încât .
Soluție. a) Funcția are toate proprietățile din enunț.
b) Deoarece pentru orice , avem
,
de unde rezultă că . Cum , deducem că , deci există , astfel încât .
Functia este continuă și .
Rezultă că exsită astfel încât .