E:14331: Difference between revisions
Pagină nouă: '''E:14.331 (Cristina Vijdeluc și Mihai Vijdeluc)''' <br> ''Fie <math> n >= 2 </math> un număr natural. Arătați că numărul <math> n^4 + n^2 + 3 </math> nu poate fi scris ca suma a doua numere prime.'' <br> '''Soluție.''' |
No edit summary |
||
| Line 4: | Line 4: | ||
<br> | <br> | ||
'''Soluție.''' | '''Soluție.''' | ||
<br> | |||
Avem <math>n^4 + n^2 + 3 = n^2(n^2+1) + 3 </math>. Deoarece <math>n^2</math> și <math>n^2 + 1</math> sunt consecutive, produsul lor este un număr par și atunci<math> n^4 + n^2 + 3</math> este număr impar. Presupunem că există două numere prime,<math>a</math> și <math>b</math> astfel încât <math>n^4 + n^2 + 3 = a + b.</math>Din cele de mai sus unul dintre numere <math>a</math> și <math>b</math> trebuie să fie<math>2</math>. Alegem <math>a=2.</math>Atunci, <math> n^4 + n^2 + 3 = (n^2 - n + 1)(n^2 + n + 1).</math>Cum <math>(n^2 - n + 1)</math> și <math>(n^2 + n + 1)</math> sunt mai mari <math>1</math> în condițiile date, rezultă <math> | |||
b</math> nu este număr prim. Prin urmare, presupunerea făcută este falsă. | |||
Revision as of 20:32, 27 December 2023
E:14.331 (Cristina Vijdeluc și Mihai Vijdeluc)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n >= 2 }
un număr natural. Arătați că numărul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^4 + n^2 + 3 }
nu poate fi scris ca suma a doua numere prime.
Soluție.
Avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^4 + n^2 + 3 = n^2(n^2+1) + 3 }
. Deoarece și sunt consecutive, produsul lor este un număr par și atunci este număr impar. Presupunem că există două numere prime,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a}
și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b}
astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^4 + n^2 + 3 = a + b.}
Din cele de mai sus unul dintre numere Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a}
și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b}
trebuie să fieFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
. Alegem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=2.}
Atunci, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^4 + n^2 + 3 = (n^2 - n + 1)(n^2 + n + 1).}
Cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n^2 - n + 1)}
și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n^2 + n + 1)}
sunt mai mari Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
în condițiile date, rezultă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b}
nu este număr prim. Prin urmare, presupunerea făcută este falsă.