28437: Diferență între versiuni

De la Universitas MediaWiki
Fără descriere a modificării
Fără descriere a modificării
Linia 1: Linia 1:
'''28437 (Nicolae Mușuroaia)'''
'''28437 (Nicolae Mușuroaia)'''
</br></br>
</br></br>
'' Fie șirul '' <math> (a_n)_{n \geq 1} </math> '' cu termenii strict pozitivi, dat de relația'' <math> a_{n+1}=ln(a_1 + a_2 + ... + a_n), n \geq 1. </math>'' Determinați ''<math>\lim_{{n \to \infty}} (\frac{a_{n+1}}{a_n}-1) \cdot e^{a_n}. </math>
'' Fie șirul '' <math> (a_n)_{n \geq 1} </math> '' cu termenii strict pozitivi, dat de relația'' <math> a_{n+1}=\ln(a_1 + a_2 + ... + a_n), n \geq 1. </math>'' Determinați ''<math>\lim_{{n \to \infty}} (\frac{a_{n+1}}{a_n}-1) \cdot e^{a_n}. </math>
</br></br>
</br></br>
'''Soluție:'''
'''Soluție:'''
</br>
</br>
Pentru orice <math> {n \geq 2} </math> avem <math>a_n = ln(a_1 + a_2 + ... + a_{n-1})
Pentru orice <math> {n \geq 2} </math> avem <math>a_n = \ln(a_1 + a_2 + ... + a_{n-1})
</math>, deci <math>a_n = a_1 + a_2 + ... + a_{n-1} = e^{a_n}</math>. Rezultă că pentru orice <math> {n \geq 2} </math> are loc
</math>, deci <math>a_n = a_1 + a_2 + ... + a_{n-1} = e^{a_n}</math>. Rezultă că pentru orice <math> {n \geq 2} </math> are loc
</br>
</br>
<math display = "block">a_{n+1}=ln(e^{a_n} + a_n).</math>
<math display = "block">a_{n+1}=\ln(e^{a_n} + a_n).</math>
</br>
</br>
Deoarece <math> a_{n+1} - a_n = ln(e^{a_n} + a_n) - ln (e^{a_n} \ge 0) </math> pentru orice <math>{n \geq 2}</math> deducem că șirul <math> (a_n)_{n \geq 2} </math> este strict crescător.
Deoarece <math> a_{n+1} - a_n = \ln(e^{a_n} + a_n) - \ln (e^{a_n} \ge 0) </math> pentru orice <math>{n \geq 2}</math> deducem că șirul <math> (a_n)_{n \geq 2} </math> este strict crescător.
</br>
</br>
Dacă șirul <math> (a_n)_{n \geq 2} </math> este mărginit superior, atunci <math> (a_n)_{n \geq 2} </math> este convergent cu <math>\lim_{{n \to \infty}} (a_n) = a \in (0, \infty). </math> Trecând la limită în relația (1), obținem <math> a = ln(e^{a_n} + a)</math> de unde <math> a = 0 </math>, absurd! Prin urmare, șirul <math>((a_n)_{n \geq 1}</math> este crescător și nemărginit superior, deci <math>\lim_{{n \to \infty}} a_n =\infty</math>.
Dacă șirul <math> (a_n)_{n \geq 2} </math> este mărginit superior, atunci <math> (a_n)_{n \geq 2} </math> este convergent cu <math>\lim_{{n \to \infty}} (a_n) = a \in (0, \infty). </math> Trecând la limită în relația (1), obținem <math> a = \ln(e^{a_n} + a)</math> de unde <math> a = 0 </math>, absurd! Prin urmare, șirul <math>((a_n)_{n \geq 1}</math> este crescător și nemărginit superior, deci <math>\lim_{{n \to \infty}} a_n =\infty</math>.
</br>
</br>
Atunci <math>\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln(e^{a_n} + a_n) - \ln(e^{a_n})}{a_n} \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln\left(1+\frac{a_n}{e^{a_n}}\right)}{\frac{a_n}{e^{a_n}}} = 1</math> deoarece din <math>\lim_{{n \to \infty}} a_n =\infty </math> rezultă că <math> \lim_{{n \to \infty}} \frac{a_n}{e^{a_n}}=0</math>
Atunci <math>\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln(e^{a_n} + a_n) - \ln(e^{a_n})}{a_n} \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln\left(1+\frac{a_n}{e^{a_n}}\right)}{\frac{a_n}{e^{a_n}}} = 1</math> deoarece din <math>\lim_{{n \to \infty}} a_n =\infty </math> rezultă că <math> \lim_{{n \to \infty}} \frac{a_n}{e^{a_n}}=0</math>

Versiunea de la data 8 noiembrie 2023 19:32

28437 (Nicolae Mușuroaia)

Fie șirul cu termenii strict pozitivi, dat de relația Determinați

Soluție:
Pentru orice avem , deci . Rezultă că pentru orice are loc


Deoarece pentru orice deducem că șirul este strict crescător.
Dacă șirul este mărginit superior, atunci este convergent cu Trecând la limită în relația (1), obținem de unde , absurd! Prin urmare, șirul este crescător și nemărginit superior, deci .
Atunci deoarece din rezultă că Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \lim_{{n \to \infty}} \frac{a_n}{e^{a_n}}=0}