28315: Difference between revisions

From Bitnami MediaWiki
No edit summary
Tag: visualeditor
No edit summary
Tag: visualeditor
Line 17: Line 17:
\sum_{k=1}^{n}m_k=(1+\epsilon) \sum_{k=1}^{n}\epsilon^k+\overline{m} \cdot \sum_{k=1}^{n}\epsilon^{2k+1}=(1+\epsilon)\cdot \epsilon \cdot \frac{\epsilon^n-1}{\epsilon-1}+\overline{m}\cdot\epsilon^3\cdot\frac{\epsilon^{2n}-1}{\epsilon^2-1}=0
\sum_{k=1}^{n}m_k=(1+\epsilon) \sum_{k=1}^{n}\epsilon^k+\overline{m} \cdot \sum_{k=1}^{n}\epsilon^{2k+1}=(1+\epsilon)\cdot \epsilon \cdot \frac{\epsilon^n-1}{\epsilon-1}+\overline{m}\cdot\epsilon^3\cdot\frac{\epsilon^{2n}-1}{\epsilon^2-1}=0
</math>
</math>
, deci centrul de greutate al poligonului <math>M_1M_2 \ldots M_n</math> este originea, indiferent de alegerea punctului <math>M</math>.
deci centrul de greutate al poligonului <math>M_1M_2 \ldots M_n</math> este originea, indiferent de alegerea punctului <math>M</math>.

Revision as of 12:50, 21 October 2023

28315 (Vasile Pop și Nicolae Mușuroia)

Fie un poligon regulat și un punct în interiorul poligonului. Notăm cu , simetricele punctului față de laturile poligonului. Arătați că, pentru orice alegere a punctului , poligoanele au același centru de greutate.

Soluție:

Vom demonstra următoarea lemă: În planul complex, simetricul punctului față de dreapta determinată de punctele și , unde , este punctul de afix
Într-adevăr, din faptul că mijlocul al segmentului aparține dreptei , rezultă că , adică = iar din , deducem că , adică . Având în vedere că și , din relația rezultă că

iar din relația Adunând egalitățile și obținem .

Revenind la problemă, considerăm un reper cartezian cu originea în centrul poligonului, astfel încât afixele punctelor și să fie , respectiv . Ca urmare, afixul punctului este , pentru orice .

Fie afixul punctului și afixul punctului Folosind lema, rezultă că , pentru orice . În consecință,

deci centrul de greutate al poligonului este originea, indiferent de alegerea punctului .