|
|
Line 1: |
Line 1: |
| '''27020 (Gheorghe Szöllösy)''' | | '''27020 (Gheorghe Szöllösy)''' |
|
| |
|
| Să se calculeze suma <math> \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{4^k \cdot (k!)^2 (n-2k)!}, \quad n \geq 1 | | Să se calculeze suma <math> \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{4^k \cdot (k!)^2 (n-2k)!}, \quad n \geq 1. |
| </math> | | </math> |
|
| |
|
Revision as of 17:59, 18 October 2023
27020 (Gheorghe Szöllösy)
Să se calculeze suma
Soluție:
Fie
coeficientul lui
din rezolvarea lui

Avem
, iar pe de altă parte,

![{\displaystyle =\sum _{k=0}^{\left[{\frac {n}{2}}\right]}C_{n}^{k}C_{n-k}^{k}\cdot \left.{\frac {1}{4^{k}}}\right.=n!\sum _{k=0}^{\left[{\frac {n}{2}}\right]}{\frac {1}{(k!)^{2}(n-k)!4^{k}}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/90ffe8287db2b247fed3fdc3c7941add52185dc2)
deci suma este egală cu