27020: Difference between revisions
Nagy Lenard (talk | contribs) No edit summary |
Nagy Lenard (talk | contribs) No edit summary |
||
Line 10: | Line 10: | ||
<math display="block"> P(X) = \left( X + \frac{1}{2}\right)^{2n} = \left(X(1+X) + \frac{1}{4}\right)^n = \sum_{k=0}^n C_n^k X^{n-k} (! - X)^{n-k} \left.\frac{1}{4^k}\right. .</math> | <math display="block"> P(X) = \left( X + \frac{1}{2}\right)^{2n} = \left(X(1+X) + \frac{1}{4}\right)^n = \sum_{k=0}^n C_n^k X^{n-k} (! - X)^{n-k} \left.\frac{1}{4^k}\right. .</math> | ||
Avem <math> a_n = \left | Avem <math> a_n = \left.\frac{1}{2^n}\right. C_{2n}^n </math>, iar pe de altă parte, | ||
<math display="block"> a_n = C_n^0 \cdot C_n^0 + C_n^1 \cdot C_{n-1}^1 \left.\frac{1}{4}\right. | <math display="block"> a_n = C_n^0 \cdot C_n^0 + C_n^1 \cdot C_{n-1}^1 \left.\frac{1}{4}\right. | ||
+ C_n^2 \cdot C_{n-2}^1\left.\frac{1}{4^2}\right. + ... = </math> | + C_n^2 \cdot C_{n-2}^1\left.\frac{1}{4^2}\right. + ... = </math> | ||
<math display="block"> = \sum_{k=0}^{\left[\frac{n}{2}\right]} C_n^k C_ | <math display="block"> = \sum_{k=0}^{\left[\frac{n}{2}\right]} C_n^k C_{n-k}^k \cdot \left.\frac{1}{4^k}\right. = n! \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{(k!)^2 (n-k)! 4^k},</math> | ||
deci suma este egală cu <math> \left.\frac{(2n!}{2^n(n!)^3}\right. .</math> | deci suma este egală cu <math> \left.\frac{(2n!)}{2^n(n!)^3}\right. .</math> |
Revision as of 17:57, 18 October 2023
27020 (Gheorghe Szöllösy)
Să se calculeze suma
Soluție:
Fie coeficientul lui din rezolvarea lui
Avem , iar pe de altă parte,
deci suma este egală cu