|
|
Line 8: |
Line 8: |
| Fie <math> a_n </math> coeficientul lui <math> X^n </math> din rezolvarea lui | | Fie <math> a_n </math> coeficientul lui <math> X^n </math> din rezolvarea lui |
|
| |
|
| <math display="block"> P(X) = \left(X + \frac{1}{2}\right)^{2n} = \left(X(1+X) + \lfloor 1/4 \rfloor\right)^n = \sum_{k=0}^n \binom{n}{k} X^{(n-k)} \left(\frac{1}{4^k}\right)</math> | | <math display="block"> P(X) = \left(X + \frac{1}{2}\right)^{2n} = \left(X(1+X) + \lfloor 1/4 \rfloor\right)^n = \sum_{k=0}^n C_n^k (! - X)^{(n-k)} \left(\frac{1}{4^k}\right)</math> |
|
| |
|
| Avem <math> a_n = \left(\frac{1}{2^n}\right) C_2n^n </math>, iar pe de altă parte, | | Avem <math> a_n = \left(\frac{1}{2^n}\right) C_2n^n </math>, iar pe de altă parte, |
Revision as of 17:45, 18 October 2023
27020 (Gheorghe Szöllösy)
Să se calculeze suma
Soluție:
Fie coeficientul lui din rezolvarea lui
Avem , iar pe de altă parte,
deci suma este egală cu