27020: Difference between revisions
Nagy Lenard (talk | contribs) No edit summary |
Nagy Lenard (talk | contribs) No edit summary |
||
| Line 8: | Line 8: | ||
Fie <math> a_n </math> coeficientul lui <math> X^n </math> din rezolvarea lui | Fie <math> a_n </math> coeficientul lui <math> X^n </math> din rezolvarea lui | ||
<math display="block"> P(X) = \left(X + \frac{1}{2}\right)^{2n} = \left(X(1+X) + \lfloor 1/4 \rfloor\right)^n = \sum_{k=0}^n | <math display="block"> P(X) = \left(X + \frac{1}{2}\right)^{2n} = \left(X(1+X) + \lfloor 1/4 \rfloor\right)^n = \sum_{k=0}^n C_n^k (! - X)^{(n-k)} \left(\frac{1}{4^k}\right)</math> | ||
Avem <math> a_n = \left(\frac{1}{2^n}\right) C_2n^n </math>, iar pe de altă parte, | Avem <math> a_n = \left(\frac{1}{2^n}\right) C_2n^n </math>, iar pe de altă parte, | ||
Revision as of 17:45, 18 October 2023
27020 (Gheorghe Szöllösy)
Să se calculeze suma
Soluție:
Fie coeficientul lui din rezolvarea lui
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X) = \left(X + \frac{1}{2}\right)^{2n} = \left(X(1+X) + \lfloor 1/4 \rfloor\right)^n = \sum_{k=0}^n C_n^k (! - X)^{(n-k)} \left(\frac{1}{4^k}\right)}
Avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n = \left(\frac{1}{2^n}\right) C_2n^n } , iar pe de altă parte, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n = C_n^0 \cdot C_n^0 + C_n^1 \cdot C_(n-1)^1 \left.\frac{1}{4}\right. + C_n^2 \cdot C_(n-2)^1\left.\frac{1}{4^2}\right. + ... = } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{k=0}^{\left[\frac{n}{2}\right]} C_n^k C_(n-k)^k \cdot \left.\frac{1}{4^k}\right. = n! \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{(k!)^2 (n-k)! 4^k},}
deci suma este egală cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{(2n!}{2^n(n!)^3}\right. .}