27020: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
Line 8: Line 8:
Fie <math> a_n </math>  coeficientul lui <math> X^n </math> din rezolvarea lui
Fie <math> a_n </math>  coeficientul lui <math> X^n </math> din rezolvarea lui


<math display="block"> P(X) = \left(X + \left.\frac{1}{2}\right\right.)^{2n} = \left(X(1+X) + \left\lfloor\frac{1}{4}\right\rfloor\right)^n = \sum_{k=0}^n C_n^k X^{(n-k)} \left(\frac{1}{4^k}\right).</math>
<math display="block"> P(X) = \left(X + \frac{1}{2}\right)^{2n} = \left(X(1+X) + \lfloor 1/4 \rfloor\right)^n = \sum_{k=0}^n \binom{n}{k} X^{(n-k)} \left(\frac{1}{4^k}\right)</math>


Avem <math> a_n = \left(\frac{1}{2^n}\right) C_2n^n </math>, iar pe de altă parte,
Avem <math> a_n = \left(\frac{1}{2^n}\right) C_2n^n </math>, iar pe de altă parte,

Revision as of 17:44, 18 October 2023

27020 (Gheorghe Szöllösy)

Să se calculeze suma

Soluție:

Fie coeficientul lui din rezolvarea lui

Avem , iar pe de altă parte,

deci suma este egală cu