|
|
Line 13: |
Line 13: |
| <math display="block"> a_n = C_n^0 \cdot C_n^0 + C_n^1 \cdot C_(n-1)^1 \left.\frac{1}{4}\right. | | <math display="block"> a_n = C_n^0 \cdot C_n^0 + C_n^1 \cdot C_(n-1)^1 \left.\frac{1}{4}\right. |
| + C_n^2 \cdot C_(n-2)^1\left(\frac{1}{4^2}\right) + ... = </math> | | + C_n^2 \cdot C_(n-2)^1\left(\frac{1}{4^2}\right) + ... = </math> |
| <math display="block"> = \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} C_n^k C_(n-k)^k \cdot \left(\frac{1}{4^k}\right) = n! \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{(k!)^2 (n-k)! 4^k},</math> | | <math display="block"> = \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} C_n^k C_(n-k)^k \cdot \left.\frac{1}{4^k}\right. = n! \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{(k!)^2 (n-k)! 4^k},</math> |
Revision as of 17:34, 18 October 2023
27020 (Gheorghe Szöllösy)
Să se calculeze suma
Soluție:
Fie coeficientul lui din rezolvarea lui
Avem , iar pe de altă parte,