27020: Difference between revisions
Nagy Lenard (talk | contribs) No edit summary |
Nagy Lenard (talk | contribs) No edit summary |
||
Line 8: | Line 8: | ||
Fie <math> a_n </math> coeficientul lui <math> X^n </math> din rezolvarea lui | Fie <math> a_n </math> coeficientul lui <math> X^n </math> din rezolvarea lui | ||
<math display="block"> P(X) = \left(X + \left\lfloor\frac{1}{2}\right\rfloor\right)^{2n} = \left(X(1+X) + \left\lfloor\frac{1}{4}\right\rfloor\right)^n = \sum_{k=0}^n C_n^k X^{(n-k)} \left(\frac{1}{4^k}\right) | <math display="block"> P(X) = \left(X + \left\lfloor\frac{1}{2}\right\rfloor\right)^{2n} = \left(X(1+X) + \left\lfloor\frac{1}{4}\right\rfloor\right)^n = \sum_{k=0}^n C_n^k X^{(n-k)} \left(\frac{1}{4^k}\right)</math>. | ||
</math>. | |||
Avem <math> a_n = \left(\frac{1}{2^n}\right) C_2n^n </math>, iar pe de altă parte, | Avem <math> a_n = \left(\frac{1}{2^n}\right) C_2n^n </math>, iar pe de altă parte, |
Revision as of 17:23, 18 October 2023
27020 (Gheorghe Szöllösy)
Să se calculeze suma
Soluție:
Fie coeficientul lui din rezolvarea lui
.
Avem , iar pe de altă parte,