2015-12-1: Difference between revisions
RobertRogo (talk | contribs) No edit summary |
mNo edit summary |
||
| Line 1: | Line 1: | ||
<math>Problema:</math> Fie <math>f:[-1,1]\to \mathbb{R}</math> o funcție crescătoare, derivabilă pe <math>[-1,1]</math> cu <math>f'(0) \neq 0</math>. Să se arate ca | <math>Problema:</math> Fie <math>f:[-1,1]\to \mathbb{R}</math> o funcție crescătoare, derivabilă pe <math>[-1,1]</math> cu <math>f'(0) \neq 0</math>. Să se arate ca există cel puțin un punct <math>c \in (-1,1), c \neq 0</math>, cu proprietatea că <math display="block">2cf(c) + \int_{0}^{c} f(x)\, dx \geq 0.</math>. | ||
< | <big>'''Soluție [Robert Rogozsan]'''</big> | ||
Dacă <math> \ f(0) \geq 0</math>, cum <math>f</math> | |||
Dacă <math> \ f(0) \geq 0</math>, cum <math>f</math> este crescătoare, vom avea că <math>f(t) \geq 0, \forall t \geq 0</math>, deci <math display="block">2tf(t) + \int_{0}^{t} f(x)\, dx \geq 0, \forall t \geq 0.</math>Atunci luăm <math>c \in (0,1)</math> arbitrar și concluzia este verificată. Analog, pentru <math> \ f(0) \leq 0</math> (luăm <math>c</math> din <math>(-1,0)</math>). | |||
<math>Observatie:</math> În funcție de cum e <math>f(0)</math> față de <math>0</math>, concluzia se verifică pentru <math>orice \ c \in (0,1)</math> (<math>(-1,0)</math>). Nu avem nevoie de faptul că <math>f</math> e derivabilă, nici de <math>f'(0) \neq 0</math>. | <math>Observatie:</math> În funcție de cum e <math>f(0)</math> față de <math>0</math>, concluzia se verifică pentru <math>orice \ c \in (0,1)</math> (<math>(-1,0)</math>). Nu avem nevoie de faptul că <math>f</math> e derivabilă, nici de <math>f'(0) \neq 0</math>. | ||
Revision as of 11:23, 3 September 2023
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Problema:} Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:[-1,1]\to \mathbb{R}} o funcție crescătoare, derivabilă pe Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [-1,1]} cu . Să se arate ca există cel puțin un punct , cu proprietatea că
Soluție [Robert Rogozsan]
Dacă , cum este crescătoare, vom avea că , deci
În funcție de cum e Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)} față de Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} , concluzia se verifică pentru Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle orice \ c \in (0,1)} (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1,0)} ). Nu avem nevoie de faptul că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} e derivabilă, nici de Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(0) \neq 0} .