2015-12-4: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
Line 17: Line 17:
             \begin{cases}
             \begin{cases}


               0 & \text{, dacă } n \ \text{divide pe} \ k  
               0 & \text{, dacă } n \text{divide pe} k  


               f(c) & \text{, dacă } n \ \text{nu divide pe} \
               f(c) & \text{, dacă } n \text{nu divide pe} k


             \end{cases}</math>
             \end{cases}</math>

Revision as of 16:34, 2 September 2023

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Problema:} Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} un corp cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m \geq 2} elemente si Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \in K[X]} . Aratati ca urmatoarele afirmatii sunt echivalente:

Exista astfel incat ;

Pentru orice avem .

Din teorema lui Lagrange aplicata grupului avem ca , deci .

Ne folosim de urmatoarea

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} un corp finit cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} elemente. Atunci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{a \in F}a^k= \begin{cases} 0 & \text{, dacă } n \text{divide pe} k f(c) & \text{, dacă } n \text{nu divide pe} k \end{cases}}