2015-12-4: Difference between revisions
RobertRogo (talk | contribs) No edit summary |
RobertRogo (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<math>Problema:</math> Fie <math>K</math> un corp cu <math>m \geq 2</math> elemente si <math>f \in K[X]</math>. Aratati ca urmatoarele afirmatii sunt echivalente: | <math>Problema:</math> Fie <math>K</math> un corp cu <math>m \geq 2</math> elemente si <math>f \in K[X]</math>. Aratati ca urmatoarele afirmatii sunt echivalente: | ||
(i) Exista <math>g \in K[X]</math> astfel incat <math>f(X)=g(X^{m-1})</math>; | <math>(i)</math> Exista <math>g \in K[X]</math> astfel incat <math>f(X)=g(X^{m-1})</math>; | ||
(ii) Pentru orice <math>a \in K^*</math> avem <math>f(X)=f(aX)</math>. | <math>(ii)</math> Pentru orice <math>a \in K^*</math> avem <math>f(X)=f(aX)</math>. | ||
<math>Solutie</math> | <math>Solutie</math> | ||
<math>(i) \rightarrow (ii)</math> | <math>(i) \rightarrow (ii)</math> | ||
Din teorema lui Lagrange aplicata grupului <math>(K^*,\cdot)</math> avem ca <math>x^{m-1}=1, \forall x \in K^*</math>, deci <math>f(aX)=g((aX)^{m-1}=g(a^{m-1}X^{m-1})=g(X^{m-1})=f(X)</math>. | Din teorema lui Lagrange aplicata grupului <math>(K^*,\cdot)</math> avem ca <math>x^{m-1}=1, \forall x \in K^*</math>, deci <math>f(aX)=g((aX)^{m-1})=g(a^{m-1}X^{m-1})=g(X^{m-1})=f(X)</math>. | ||
<math>(ii) \rightarrow (i)</math> | |||
Revision as of 16:27, 2 September 2023
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Problema:} Fie un corp cu elemente si Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \in K[X]} . Aratati ca urmatoarele afirmatii sunt echivalente:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (i)} Exista Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g \in K[X]} astfel incat Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(X)=g(X^{m-1})} ;
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (ii)} Pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \in K^*} avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(X)=f(aX)} .
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Solutie}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (i) \rightarrow (ii)} Din teorema lui Lagrange aplicata grupului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (K^*,\cdot)} avem ca Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{m-1}=1, \forall x \in K^*} , deci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(aX)=g((aX)^{m-1})=g(a^{m-1}X^{m-1})=g(X^{m-1})=f(X)} .
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (ii) \rightarrow (i)}