2015-12-1: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
Line 1: Line 1:
<math>Problema:</math> Fie <math>f:[-1,1]\to \mathbb{R}</math> o funcție crescătoare, derivabilă pe <math>[-1,1]</math> cu <math>f'(0) \neq 0</math>. Să se arate ca exista cel puțin un punct <math>c \in (-1,1), c \neq 0</math>, cu proprietatea că <math display="block">2cf(c) + \int_{0}^{c} f(x)\, dx \geq 0</math>.
<math>Problema:</math> Fie <math>f:[-1,1]\to \mathbb{R}</math> o funcție crescătoare, derivabilă pe <math>[-1,1]</math> cu <math>f'(0) \neq 0</math>. Să se arate ca exista cel puțin un punct <math>c \in (-1,1), c \neq 0</math>, cu proprietatea că <math display="block">2cf(c) + \int_{0}^{c} f(x)\, dx \geq 0</math>.


<math>Solu\c tie:\ (Robert \ Rogozsan)</math>
<math>Solu\c t ie:\ (Robert \ Rogozsan)</math>
Dacă <math> \ f(0) \geq 0</math>, cum <math>f</math> e crescătoare, vom avea că <math>f(t) \geq 0, \forall t \geq 0</math>, deci <math>2tf(t) + \int_{0}^{t} f(x)\, dx \geq 0, \forall t \geq 0</math>. Atunci luăm <math>c \in (0,1)</math> arbitrar și concluzia este verificată. Analog pentru <math> \ f(0) \leq 0</math> (luăm <math>c</math> din <math>(-1,0)</math>).
Dacă <math> \ f(0) \geq 0</math>, cum <math>f</math> e crescătoare, vom avea că <math>f(t) \geq 0, \forall t \geq 0</math>, deci <math>2tf(t) + \int_{0}^{t} f(x)\, dx \geq 0, \forall t \geq 0</math>. Atunci luăm <math>c \in (0,1)</math> arbitrar și concluzia este verificată. Analog pentru <math> \ f(0) \leq 0</math> (luăm <math>c</math> din <math>(-1,0)</math>).


<math>Observa\c tie:</math> În funcție de cum e <math>f(0)</math> față de <math>0</math>, concluzia se verifică pentru <math>orice \ c \in (0,1)</math> (<math>(-1,0)</math>). Nu avem nevoie de faptul că <math>f</math> e derivabilă, nici de <math>f'(0) \neq 0</math>.
<math>Observa\c t ie:</math> În funcție de cum e <math>f(0)</math> față de <math>0</math>, concluzia se verifică pentru <math>orice \ c \in (0,1)</math> (<math>(-1,0)</math>). Nu avem nevoie de faptul că <math>f</math> e derivabilă, nici de <math>f'(0) \neq 0</math>.

Revision as of 14:21, 2 September 2023

Fie o funcție crescătoare, derivabilă pe cu . Să se arate ca exista cel puțin un punct , cu proprietatea că

.

Failed to parse (unknown function "\c"): {\displaystyle Solu\c t ie:\ (Robert \ Rogozsan)} Dacă , cum e crescătoare, vom avea că , deci . Atunci luăm arbitrar și concluzia este verificată. Analog pentru (luăm din ).

Failed to parse (unknown function "\c"): {\displaystyle Observa\c t ie:} În funcție de cum e față de , concluzia se verifică pentru (). Nu avem nevoie de faptul că e derivabilă, nici de .