E:26460: Difference between revisions

From Bitnami MediaWiki
Ionut (talk | contribs)
Created page with "'''Problema 26460 (Nicolae Mușuroia, Baia Mare)''' ''Să se arate că dacă a, b, c sunt numere reale strict pozitive cu <math>a + b + c = abc</math>, atunci <math>(1 + a^2)(1 + b^2)(1 + c^2) \geq 64</math>.'' '''Soluție.''' Relația <math>a + b + c = abc</math> se scrie <math>\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = 1</math>. Avem: <math> 1 + a^2 = a^2 \left( 1 + \frac{1}{a^2} \right) = a^2 \left( \frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} + \frac{1}{a^2} \righ..."
 
mNo edit summary
Line 5: Line 5:
'''Soluție.'''
'''Soluție.'''


Relația <math>a + b + c = abc</math> se scrie <math>\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = 1</math>. Avem:
Relația <math>a + b + c = abc</math> se scrie <math>\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = 1</math>. Avem<math display="block">
<math>
1 + a^2 = a^2 \left( 1 + \frac{1}{a^2} \right) = a^2 \left( \frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} + \frac{1}{a^2} \right) =
1 + a^2 = a^2 \left( 1 + \frac{1}{a^2} \right) = a^2 \left( \frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} + \frac{1}{a^2} \right) =
</math>
</math><math display="block">
<math>
= a^2 \left( \frac{1}{a} + \frac{1}{b} \right) \left( \frac{1}{a} + \frac{1}{c} \right) = \frac{(a + b)(a + c)}{bc} \geq \frac{4a}{\sqrt{bc}}.
= a^2 \left( \frac{1}{a} + \frac{1}{b} \right) \left( \frac{1}{b} + \frac{1}{c} \right) = \frac{(a + b)(a + c)}{\sqrt{bc}} \geq \frac{4a}{\sqrt{bc}}.
</math>Deci <math display="block">(1 + a^2)(1 + b^2)(1 + c^2) \geq \frac{4a}{\sqrt{bc}} \cdot \frac{4b}{\sqrt{ac}} \cdot \frac{4c}{\sqrt{ab}} = 64.</math>
</math>
 
Deci <math>(1 + a^2)(1 + b^2)(1 + c^2) \geq \frac{4a}{\sqrt{bc}} \cdot \frac{4b}{\sqrt{ac}} \cdot \frac{4c}{\sqrt{ab}} = 64</math>.

Revision as of 12:42, 19 January 2025

Problema 26460 (Nicolae Mușuroia, Baia Mare)

Să se arate că dacă a, b, c sunt numere reale strict pozitive cu , atunci .

Soluție.

Relația se scrie . Avem

Deci