Gazeta matematică 2013: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
Line 1: Line 1:
== Gazeta Matematică 1/2013 ==
== Gazeta Matematică 1/2013 ==
'''E:[[14440]] (Vasile Ienuțaș și Radu Pop)'''
''Se consideră numărul natural <math> A=a_1^2+a_2^2+a_3^2+.....+a_{2012}^2 </math> unde <math>a_1,a_2,a_3,.....,a_{2012}</math> sunt numere prime, mai mari sau egale cu <math>5</math>. Arătați că <math>B=2 \cdot A + 2013 </math> nu este pătrat perfect.''


'''[[26713]] (Radu Pop și Vasile Ienuțaș)'''
'''[[26713]] (Radu Pop și Vasile Ienuțaș)'''


''Se consideră șirul de numere reale <math>(x_n)_{n \geq 0}</math> și <math>(y_n)_{n \geq 0}</math> cu <math>x_n \geq 1</math>, <math>y_n \geq 1</math>, pentru orice <math>n \in \mathbb{N}</math>, și <math>\lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2</math>. Să se calculeze <math>\lim_{{n \to \infty}} x_n</math> și <math>\lim_{{n \to \infty}} y_n</math>.''
''Se consideră șirul de numere reale <math>(x_n)_{n \geq 0}</math> și <math>(y_n)_{n \geq 0}</math> cu <math>x_n \geq 1</math>, <math>y_n \geq 1</math>, pentru orice <math>n \in \mathbb{N}</math>, și <math>\lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2</math>. Să se calculeze <math>\lim_{{n \to \infty}} x_n</math> și <math>\lim_{{n \to \infty}} y_n</math>.''
'''E:[[14440]] (Vasile Ienuțaș și Radu Pop)'''
''Se consideră numărul natural <math> A=a_1^2+a_2^2+a_3^2+.....+a_{2012}^2 </math> unde <math>a_1,a_2,a_3,.....,a_{2012}</math> sunt numere prime, mai mari sau egale cu <math>5</math>. Arătați că <math>B=2 \cdot A + 2013 </math> nu este pătrat perfect.''

Revision as of 16:49, 30 November 2024

Gazeta Matematică 1/2013

E:14440 (Vasile Ienuțaș și Radu Pop)

Se consideră numărul natural Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=a_1^2+a_2^2+a_3^2+.....+a_{2012}^2 } unde Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1,a_2,a_3,.....,a_{2012}} sunt numere prime, mai mari sau egale cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5} . Arătați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=2 \cdot A + 2013 } nu este pătrat perfect.

26713 (Radu Pop și Vasile Ienuțaș)

Se consideră șirul de numere reale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n \geq 0}} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (y_n)_{n \geq 0}} cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_n \geq 1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_n \geq 1} , pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}} , și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2} . Să se calculeze Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} x_n} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} y_n} .