S:L22.108: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
Line 8: Line 8:




Dacă <math>x_1, x_2, x_3 \in \mathbb{C}</math> sunt rădăcinile polinomului <math>f</math>, atunci din [https://ro.wikipedia.org/wiki/Formulele_lui_Vi%C3%A8te relațiile lui Viete] avem<math display="block">x_1x_2x_3 = - \frac{\det(A)}{\det(B)} = - \alpha.</math>Se obține <math>x_3 = -\alpha</math>, ceea ce implică<math display="block">f = \det(B) \cdot \left(X^2 + 1 \right) \cdot \left( X + \alpha \right).</math>Atunci<math display="block">f\left( 1 \right) = \det \left( A + B \right) = 2\left( \alpha +1 \right) \cdot \det(B)</math>și<math display="block">f\left( -1 \right) = \det \left( A - B \right) = 2\left( \alpha - 1 \right) \cdot \det(B).</math>Avem''<math display="block">\frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\alpha +1}{\alpha -1} = \frac{\dfrac{\det(A)}{\det(B)}+1}{\dfrac{\det(A)}{\det(B)}-1} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. </math>''
Dacă <math>x_1, x_2, x_3 \in \mathbb{C}</math> sunt rădăcinile polinomului <math>f</math>, atunci din [https://ro.wikipedia.org/wiki/Formulele_lui_Vi%C3%A8te relațiile lui Viete] avem<math display="block">x_1x_2x_3 = - \frac{\det(A)}{\det(B)} = - \alpha.</math>Se obține <math>x_3 = -\alpha</math>, ceea ce implică<math display="block">f = \det(B) \cdot \left(X^2 + 1 \right) \cdot \left( X + \alpha \right).</math>Atunci<math display="block">f\left( 1 \right) = \det \left( A + B \right) = 2\left( \alpha +1 \right) \cdot \det(B)</math>și<math display="block">f\left( -1 \right) = \det \left( A - B \right) = 2\left( \alpha - 1 \right) \cdot \det(B).</math>Avem''<math display="block">\frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\alpha +1}{\alpha -1}. </math>''Cum <math>\alpha = \frac{\det(A)}{\det(B)} </math> se obține <math display="block">\frac{\alpha+1}{\alpha -1} = \frac{\det(A) + \det(B)}{\det(A) - \det(B)} </math>În concluzie, are loc egalitatea''<math display="block">\frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. </math>''

Revision as of 08:51, 20 July 2024

S:L22.108. (Nicolae Mușuroia)

Fie cu ,  neinversabilă și , unde . Arătați că

Soluție.

Ipotezele și , cu , implică

Fie polinomul . Atunci, există pentru care
Cum , avem , deci și sunt rădăcini ale polinomului .


Dacă sunt rădăcinile polinomului , atunci din relațiile lui Viete avem

Se obține , ceea ce implică
Atunci
și
Avem
Cum se obține
În concluzie, are loc egalitatea