15678: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
Line 7: Line 7:
Ultima cifră numărului <math>5(a-c+b-d+1)</math> poate fi <math>0</math> sau <math>5</math>. Atunci ultima cifră a numărului <math>2021+5(a-c+b-d+1)</math> poate fi <math>1</math> sau <math>6</math>,de unde deducem că <math>d=1</math> sau <math>d=6</math>.
Ultima cifră numărului <math>5(a-c+b-d+1)</math> poate fi <math>0</math> sau <math>5</math>. Atunci ultima cifră a numărului <math>2021+5(a-c+b-d+1)</math> poate fi <math>1</math> sau <math>6</math>,de unde deducem că <math>d=1</math> sau <math>d=6</math>.


Pentru <math>d=1</math> relația devine <math>\overline{abcd} = 2021+5(a-c+b)</math>. Deoarece <math>a-c+b \le 18</math> avem <math>2021+5(a-c+b) \le 2111</math> și, cum <math>\overline{abcd}= 2021+5(a-c+b)</math>, obținem <math>a \le 2<math>.  
'''1.''' Pentru <math>d=1</math> relația devine <math>\overline{abcd} = 2021+5(a-c+b)</math>. Deoarece <math>a-c+b \le 18</math> avem <math>2021+5(a-c+b) \le 2111</math> și, cum <math>\overline{abcd}= 2021+5(a-c+b)</math>, obținem <math>a \le 2</math>.  


Pentru <math>a=2</math> relația dată devine <math>\overline{2bc1} = 2021+5(2-c+b)</math> sau <math>2001+100b+10c=2031-5c+5b</math>, de unde <math>95b+15c=30</math>.  
Pentru <math>a=2</math> relația dată devine <math>\overline{2bc1} = 2021+5(2-c+b)</math> sau <math>2001+100b+10c=2031-5c+5b</math>, de unde <math>95b+15c=30</math>.  
Line 15: Line 15:
Pentru <math>a=1</math> nu obținem nicio soluție.
Pentru <math>a=1</math> nu obținem nicio soluție.


Pentru <math>d=6</math> relația dată devine <math>\overline{abc6} = 2021+5(a-c+b-5)</math>. Deoarece <math>a-c+b-5 \le 13/<math> avem <math>2021+5(a-c+b) \le 2086</math> și cum <math>\overline{abc6} = 2021+5(a-c+b-5)</math>, obținem <math>a \le 2</math>.
'''2.''' Pentru <math>d=6</math> relația dată devine <math>\overline{abc6} = 2021+5(a-c+b-5)</math>. Deoarece <math>a-c+b-5 \le 13/<math> avem <math>2021+5(a-c+b) \le 2086</math> și cum <math>\overline{abc6} = 2021+5(a-c+b-5)</math>, obținem <math>a \le 2</math>.


Pentru <math>a=2</math> relația dată devine <math>\overline{2bc6} = 2021+5(2-c+b-5)</math> sau <math>2006+100b+10c=2006-5c+5b</math>, de unde <math>95b+15c=0</math>. De aici <math>b=0</math> și <math>c=0</math>.
Pentru <math>a=2</math> relația dată devine <math>\overline{2bc6} = 2021+5(2-c+b-5)</math> sau <math>2006+100b+10c=2006-5c+5b</math>, de unde <math>95b+15c=0</math>. De aici <math>b=0</math> și <math>c=0</math>.

Revision as of 10:40, 16 January 2024

15678 (Cristina Vijdeluc și Mihai Vijdeluc)

Aflați toate numerele de forma pentru care

Soluție:

Ultima cifră numărului poate fi sau . Atunci ultima cifră a numărului poate fi sau ,de unde deducem că sau .

1. Pentru relația devine . Deoarece avem și, cum , obținem .

Pentru relația dată devine sau , de unde .

De aici și . Numărul căutat este .

Pentru nu obținem nicio soluție.

2. Pentru relația dată devine . Deoarece și cum , obținem .

Pentru relația dată devine sau , de unde . De aici și . Numărul căutat este .

Pentru nu obținem nicio soluție.