|
|
| Line 1: |
Line 1: |
| \usepackage{MnSymbol}
| | |
|
| |
|
| '''27401 (Radu Pop, Baia Mare)''' | | '''27401 (Radu Pop, Baia Mare)''' |
Revision as of 20:34, 11 January 2024
27401 (Radu Pop, Baia Mare)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}}
. Să se arate că
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n+1)ab(a+b)-(4n^3+13n+10)ab+(n+2)^3(a+b) \geq (n+2)^3, }
oricare ar fi
Soluție:
Fie
.Avem


![{\displaystyle \geq (n+1){\sqrt[{n+2}]{\frac {x^{n+1}}{(n+1)^{n+1}}}}\cdot {\sqrt[{n+2}]{\frac {y^{n+1}}{(n+1)^{n+1}}}}\cdot {\sqrt[{n+2}]{\frac {xy}{(n+1)^{2}}}}\cdot (n+2)^{3}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da5a051e846cfee48569fdae4c3148a089880848)

Rezultă că
. Fie
şi
. Obţinem
, de unde
, deci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n+1)ab(a+b)-(4n^2+13n+10)ab+(n+2)^3(a+b) \ge (n+2)^3}
.