26713: Difference between revisions
No edit summary |
No edit summary |
||
| Line 6: | Line 6: | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
Avem <math> 2 \leq x_n - y_n \leq \sqrt{2(x_n^2 + y_n^2)} </math> și cum <math> \lim_{{n \to \infty}} \sqrt{2(x_n^2 + y_n^2)} = 2 </math>, rezultă că <math> \lim_{{n \to \infty}} (x_n + y_n) = 2 </math>. Cum <math> 1 \leq x_n \leq x_n + y_n - 1 </math> și <math> \lim_{{n \to \infty}} (x_n + y_n - 1) = 1 </math>, obținem <math> \lim_{{n \to \infty}} x_n = 1 </math>. Analog, <math> \lim_{{n \to \infty}} y_n = 1 </math>. | Avem <math> 2 \leq x_n - y_n \leq \sqrt{2(x_n^2 + y_n^2)} </math> și cum <math> \lim_{{n \to \infty}} \sqrt{2(x_n^2 + y_n^2)} = 2 </math>, rezultă că <math> \lim_{{n \to \infty}} (x_n + y_n) = 2 </math>. | ||
Cum <math> 1 \leq x_n \leq x_n + y_n - 1 </math> și <math> \lim_{{n \to \infty}} (x_n + y_n - 1) = 1 </math>, obținem <math> \lim_{{n \to \infty}} x_n = 1 </math>. Analog, <math> \lim_{{n \to \infty}} y_n = 1 </math>. | |||
Latest revision as of 08:08, 8 January 2024
26713 (Radu Pop și Vasile Ienuțaș)
Se consideră șirul de numere reale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n \geq 0}}
și cu , , pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}}
, și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2}
. Să se calculeze Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} x_n}
și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} y_n}
.
Soluție:
Avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \leq x_n - y_n \leq \sqrt{2(x_n^2 + y_n^2)} }
și cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} \sqrt{2(x_n^2 + y_n^2)} = 2 }
, rezultă că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} (x_n + y_n) = 2 }
.
Cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 \leq x_n \leq x_n + y_n - 1 } și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} (x_n + y_n - 1) = 1 } , obținem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} x_n = 1 } . Analog, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} y_n = 1 } .