28251: Difference between revisions
Pagină nouă: '''28251 (Trif Flaviu) ''' <br /> <br /> ''Fie'' <math>(n \geq 2)</math> ''un număr natural și'' <math> f: [0,1] \longrightarrow \mathbb{R} </math> ''o funcție continuă astfel încât'' <math>f(0) \geq 0</math> si <math>\int_{0}^{1} e^2f(x) dx = 1+\frac{2}{n^3}</math>. <br /> a) ''Dați un exemplu de o funcție f cu proprietățile din enunț''. <br /> b) ''Arătați că există'' <math> c \in [0,1] </math> astfel încât <math> f(c) = c^{n^{3}} - 1 </math>. '''Solu... |
No edit summary |
||
| Line 1: | Line 1: | ||
'''28251 ( | '''28251 (Gheorghe Boroica) ''' | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
''Fie'' <math>(n \geq 2)</math> ''un număr natural și'' <math> f: [0,1] \longrightarrow \mathbb{R} </math> ''o funcție continuă astfel încât'' <math>f(0) \geq 0</math> | ''Fie'' <math>(n \geq 2)</math> ''un număr natural și'' <math> f: [0,1] \longrightarrow \mathbb{R} </math> ''o funcție continuă astfel încât'' <math>f(0) \geq 0</math> și <math>\int_{0}^{1} e^{2f(x)} dx = 1+\frac{2}{n^3}</math>. | ||
<br /> | <br /> | ||
a) ''Dați un exemplu de o funcție f cu proprietățile din enunț''. | a) ''Dați un exemplu de o funcție <math>f</math> cu proprietățile din enunț''. | ||
<br /> | <br /> | ||
b) ''Arătați că există'' <math> c \in [0,1] </math> astfel încât <math> f(c) = c^{n^{3}} - 1 | b) ''Arătați că există'' <math> c \in [0,1] </math> astfel încât <math> f(c) = c^{n^{3}} - 1 | ||
Revision as of 18:50, 7 January 2024
28251 (Gheorghe Boroica)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n \geq 2)}
un număr natural și o funcție continuă astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0) \geq 0}
și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1} e^{2f(x)} dx = 1+\frac{2}{n^3}}
.
a) Dați un exemplu de o funcție Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}
cu proprietățile din enunț.
b) Arătați că există Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c \in [0,1] }
astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(c) = c^{n^{3}} - 1 }
.
Soluție. a) Funcția Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f: [0,1] \longrightarrow \mathbb{R}, \quad f(x) = \ln\sqrt{1 + \frac{4x}{n^3}}}
are toate proprietățile din enunț.
b) Deoarece Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^t \geq t + 1}
pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in \mathbb{R}}
, avem
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 + \frac{2}{n^3} = \int_{0}^{1} e^{2f(x)} dx \geq \int_{0}^{1} (2f(x) + 1) dx = 2\int_{0}^{1} f(x)dx + 1}
,
de unde rezultă că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1} f(x)dx\leq \frac{1}{n^3}}
. Cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1} x^{n^3-1}dx}
, deducem că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1} (f(x) - x^{n^3-1}_dx \leq 0 }
, deci există Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \in [0,1] }
, astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a) - a^{n^{3}}-1 \leq 0 }
.
Functia Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g : [0,1] \longrightarrow \mathbb{R}, g(x) = f(x) - x^{n^{3}}}
este continuă și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(0) * g(a) \leq 0}
.
Rezultă că exsită Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c \in [0,a] \subseteq [0,1]}
astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(c) = 0 }
.