|
|
Line 23: |
Line 23: |
|
| |
|
| b) Avem <math>m\left(\sphericalangle ARM\right) = \frac{1}{2}\cdot m\left(\stackrel{\frown}{BM}\right) = m\left(\sphericalangle BCM\right) = 30^\circ.</math> | | b) Avem <math>m\left(\sphericalangle ARM\right) = \frac{1}{2}\cdot m\left(\stackrel{\frown}{BM}\right) = m\left(\sphericalangle BCM\right) = 30^\circ.</math> |
| | |
| | c) Din <math>m\left( \sphericalangle DMC \right) = m\left( \sphericalangle MAC \right) + m\left( \sphericalangle AMC \right)</math>, și <math>m \left( \stackrel{\frown}{MT} \right) = \frac{1}{2} \cdot m\left( \sphericalangle MCT \right) = \frac{1}{2} \cdot m\left( \sphericalangle MRT \right)</math> se deduce că are loc egalitatea <math display="block"> m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MAT\right) = m\left(\sphericalangle DMC\right)</math> |
E:14892 (Radu Pop & Ienuțaș Vasile)
Fie triunghiul cu și punctele , , , . Punctul este situat în interiorul triunghiului astfel încât și , punctul astfel încât cu , iar și astfel încât și .
- Arătați că
- Determinați măsura unghiului
- Arătați că
Soluție
miniatura
Folosim notațiile și . Atunci și .
Cum , avem și , deci triunghiul este echilateral.
În triunghiul avem și , deci . Cum , rezultă că triunghiul este isoscel, cu
Fie
simetricul punctului
față de punctul
. Atunci triunghiul
este dreptunghic, cu
și
, deci
, deci patrulaterul
este inscriptibil.
Notăm . Avem . Atunci .
În triunghiul avem și , deci . Cum , rezultă că triunghiul este isoscel, cu
Deci punctele
,
,
,
,
sunt conciclice.
a) Avem , deci
b) Avem
c) Din , și se deduce că are loc egalitatea