28354: Difference between revisions
Pagină nouă: '''28354 (Florin Bojor)''' ''Fie <math>O</math> punctul de intersecție a diagonalelor patrulaterului convex <math>ABCD</math> și punctele <math>E</math> ,<math>F</math> ,<math>G</math> și <math>H</math> pe segmentele <math>OA</math>, <math>OB</math>, <math>OC</math>, respectiv <math>OD</math>, astfel încât <math>AE = BF = CG = DH</math>. Notăm cu <math>I</math>,<math>J</math>,<math>K</math> și <math>L</math> mijloacele segmentelor <math>AB</math>, <math>BC</math>, <ma... |
No edit summary |
||
Line 21: | Line 21: | ||
\overrightarrow{i} + \frac{{BD}}{2} \cdot \overrightarrow{j} </math> (2) | \overrightarrow{i} + \frac{{BD}}{2} \cdot \overrightarrow{j} </math> (2) | ||
Din (1) și (2) rezultă ca <math>I | Din (1) și (2) rezultă ca <math>I</math>,<math>M</math> și<math>K</math> sunt coliniare dacă și numai dacă <math>AC = BD</math>. | ||
b)Notăm <math>\overrightarrow{i} +\overrightarrow{j} = \overrightarrow{O R}</math> și <math>\overrightarrow{-i} +\overrightarrow{j} = \overrightarrow{O S}</math>. | b)Notăm <math>\overrightarrow{i} +\overrightarrow{j} = \overrightarrow{O R}</math> și <math>\overrightarrow{-i} +\overrightarrow{j} = \overrightarrow{O S}</math>. |
Revision as of 15:40, 3 December 2023
28354 (Florin Bojor)
Fie punctul de intersecție a diagonalelor patrulaterului convex și punctele , , și pe segmentele , , , respectiv , astfel încât . Notăm cu ,, și mijloacele segmentelor , , , respectiv și cu ,, și mijloacele segmentelor , , , respectiv . Arătați că:
Soluție.
a)Fie și versorii și a vectorilor respectiv .
Deoarece și sunt mijloacele segmentelor , respectiv ,obținem:
. (1)
Cum este mijloxul segemntului ,deducem:
(2)
Din (1) și (2) rezultă ca , și sunt coliniare dacă și numai dacă .
b)Notăm și .
Se observă că semidreptele (OR și OS sunt bisectoarele unghiurilor COD,respectiv AOD.Ca în (1),deducem că ,iar .
Fiind bisectoarele a două unghiuri adiacente suplementare,semidreptele (OR și OS sunt perpendiculare ,de unde rezultă că , , și .Dar , deci , și sunt necoliniare ,așadar , și analog .Notând cu ,,, intersecțiile perechilor de drepte și , și , și , și ,din cele de mai înaite rezultă că este dreptunghi.