28437: Diferență între versiuni

De la Universitas MediaWiki
Fără descriere a modificării
Fără descriere a modificării
Linia 12: Linia 12:
Deoarece <math> a_{n+1} - a_n = ln(e^{a_n} + a_n) - ln (e^{a_n} \ge 0) </math> pentru orice <math>{n \geq 2}</math> deducem că șirul <math> (a_n)_{n \geq 2} </math> este strict crescător.
Deoarece <math> a_{n+1} - a_n = ln(e^{a_n} + a_n) - ln (e^{a_n} \ge 0) </math> pentru orice <math>{n \geq 2}</math> deducem că șirul <math> (a_n)_{n \geq 2} </math> este strict crescător.
</br>
</br>
Dacă șirul <math> (a_n)_{n \geq 2} </math> este mărginit superior, atunci <math> (a_n)_{n \geq 2} </math> este convergent cu <math>\lim_{{n \to \infty}} (a_n) = a \in (0, \infty). </math> Trecând la limită în relația (1), obținem
Dacă șirul <math> (a_n)_{n \geq 2} </math> este mărginit superior, atunci <math> (a_n)_{n \geq 2} </math> este convergent cu <math>\lim_{{n \to \infty}} (a_n) = a \in (0, \infty). </math> Trecând la limită în relația (1), obținem <math> a = ln(e^{a_n} + a)</math> de unde <math> a = 0 </math>, absurd! Prin urmare, șirul <math>((a_n)_{n \geq 1}</math> este crescător și nemărginit superior, deci <math>\lim_{{n \to \infty}} a_n =\infty</math>.
</br>
Atunci <math>\lim_{{n \to \infty}}(\frac{a_{n+1}}{a_n}-1) \cdot e^{a_n}=

Versiunea de la data 8 noiembrie 2023 19:09

28437 (Nicolae Mușuroaia)

Fie șirul cu termenii strict pozitivi, dat de relația Determinați

Soluție:
Pentru orice avem , deci . Rezultă că pentru orice are loc


Deoarece pentru orice deducem că șirul Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle (a_n)_{n \geq 2} } este strict crescător.
Dacă șirul Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle (a_n)_{n \geq 2} } este mărginit superior, atunci Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle (a_n)_{n \geq 2} } este convergent cu Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \lim_{{n \to \infty}} (a_n) = a \in (0, \infty). } Trecând la limită în relația (1), obținem Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle a = ln(e^{a_n} + a)} de unde Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle a = 0 } , absurd! Prin urmare, șirul Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle ((a_n)_{n \geq 1}} este crescător și nemărginit superior, deci Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \lim_{{n \to \infty}} a_n =\infty} .
Atunci <math>\lim_Format:N \to \infty(\frac{a_{n+1}}{a_n}-1) \cdot e^{a_n}=