28315: Difference between revisions
Vardai Erwin (talk | contribs) Pagină nouă: '''28315.''' '' Fie <math>P_1P_2\ldots P_n</math> <math>(n \geq 3)</math> un poligon regulat și <math>M</math> un punct în interiorul poligonului. Notăm cu <math>M_1</math>, <math>M_2, \ldots, M_n</math> simetricele punctului <math>M</math> față de laturile poligonului. Arătați că, pentru orice alegere a punctului <math>M</math>, poligoanele <math>M_1</math><math>M_2 \ldots M_n</math> au același centru de greutate.'' ::::::'... |
Nagy Lenard (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
'''28315 (Vasile Pop)''' | |||
<br /> | |||
<br /> | |||
''Fie <math>P_1P_2\ldots P_n</math> <math>(n \geq 3)</math> un poligon regulat și <math>M</math> un punct în interiorul poligonului. Notăm cu <math>M_1</math>, <math>M_2, \ldots, M_n</math> simetricele punctului <math>M</math> față de laturile poligonului. Arătați că, pentru orice alegere a punctului <math>M</math>, poligoanele <math>M_1</math><math>M_2 \ldots M_n</math> au același centru de greutate.'' | |||
<br /> | |||
<br /> | |||
'''Soluție:''' | |||
<br /> | |||
<br /> | |||
Vom demonstra următoarea lemă: În planul complex, simetricul punctului <math>M(m)</math> față de dreapta determinată de punctele <math>A(a)</math> și <math>B(b)</math>, unde <math>|a| = |b| = 1</math>, este punctul <math>M^{\prime} | |||
</math> de afix <math>m^{\prime} = a + b - ab\overline{m} | </math> de afix <math>m^{\prime} = a + b - ab\overline{m} | ||
.</math> | .</math> | ||
Revision as of 10:54, 20 October 2023
28315 (Vasile Pop)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1P_2\ldots P_n}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n \geq 3)}
un poligon regulat și un punct în interiorul poligonului. Notăm cu , simetricele punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M}
față de laturile poligonului. Arătați că, pentru orice alegere a punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M}
, poligoanele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_2 \ldots M_n}
au același centru de greutate.
Soluție:
Vom demonstra următoarea lemă: În planul complex, simetricul punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M(m)}
față de dreapta determinată de punctele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(a)}
și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(b)}
, unde Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |a| = |b| = 1}
, este punctul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M^{\prime} }
de afix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^{\prime} = a + b - ab\overline{m} .}
Într-adevăr, din faptul că mijlocul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N(n)}
al segmentului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [MM^{\prime}]}
aparține dreptei Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB}
, rezultă că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{n-a}{b-a} \in \mathbb{R}}
, adică Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{n-a}{b-a}}
= Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\overline{n}-\overline{a}}{\overline{b}-\overline{a}}, (1), }
iar din Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle MM^{\prime} \perp AB}
, deducem că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{m^{\prime}-m}{b-a} \in i\mathbb{R^*}}
, adică Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{m^{\prime}-m}{b-a} = - \frac{\overline{m^{\prime}}-\overline{m}}{\overline{b}-\overline{a}}, (2)}
. Având în vedere că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{a} = \frac{1}{a}, \overline{b} = \frac{1}{b}}
și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = \frac{m+m^{\prime}}{2}}
, din relația Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1)}
rezultă că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^{\prime}+ m = 2(a + b) - ab(\overline{m^{\prime}}+\overline{m}), (3)}
, iar din relația Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2)}
că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^{\prime}-m=ab(\overline{m^{\prime}}-\overline{m}), (4).}
Adunând egalitățile Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3)}
și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (4)}
obținem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^{\prime}=a+b-ab\overline{m}}
.
Revenind la problemă, considerăm un reper cartezian cu originea în centrul poligonului, astfel încât afixele punctelor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_n} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1} să fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} , respectiv Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon = \cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}} . Ca urmare, afixul punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_k} este Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon^k} , pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k \in \{1, 2, \ldots, n\} } .
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m}
afixul punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M}
și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_k}
afixul punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_k, 1 \leq k \leq n.}
Folosind lema, rezultă că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_k=\epsilon^k+\epsilon^{k+1}-\epsilon^{2k+1} \overline{m}}
, pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k}
. În consecință,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n}m_k=(1+\epsilon) \sum_{k=1}^{n}\epsilon^k+\overline{m} \cdot \sum_{k=1}^{n}\epsilon^{2k+1}=(1+\epsilon)\cdot \epsilon \cdot \frac{\epsilon^n-1}{\epsilon-1}+\overline{m}\cdot\epsilon^3\cdot\frac{\epsilon^{2n}-1}{\epsilon^2-1}=0 }
, deci centrul de greutate al poligonului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_1M_2 \ldots M_n}
este originea, indiferent de alegerea punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M}
.