27020: Difference between revisions
Nagy Lenard (talk | contribs) No edit summary |
Nagy Lenard (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
'''27020 (Gheorghe Szöllösy)''' | '''27020 (Gheorghe Szöllösy)''' | ||
Să se calculeze suma <math> \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{4^k \cdot (k!)^2 (n-2k)!}, \quad n \geq 1. | \textit{italic} Să se calculeze suma <math> \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{4^k \cdot (k!)^2 (n-2k)!}, \quad n \geq 1. | ||
</math> | </math> | ||
Revision as of 18:04, 18 October 2023
27020 (Gheorghe Szöllösy)
\textit{italic} Să se calculeze suma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{4^k \cdot (k!)^2 (n-2k)!}, \quad n \geq 1. }
Soluție:
Fie coeficientul lui din rezolvarea lui
Avem , iar pe de altă parte,
deci suma este egală cu