27020: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
Line 1: Line 1:
'''27020 (Gheorghe Szöllösy)'''
'''27020 (Gheorghe Szöllösy)'''


Să se calculeze suma <math> \sum_{k=0}^{\left\lfloor\frac{n}{2}\right.} \frac{1}{4^k \cdot (k!)^2 \cdot (n-2k)!}, \quad n \geq 1
Să se calculeze suma <math> \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{4^k \cdot (k!)^2 \cdot (n-2k)!}, \quad n \geq 1
</math>
</math>



Revision as of 17:40, 18 October 2023

27020 (Gheorghe Szöllösy)

Să se calculeze suma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{4^k \cdot (k!)^2 \cdot (n-2k)!}, \quad n \geq 1 }

Soluție:

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n } coeficientul lui din rezolvarea lui

Avem , iar pe de altă parte,

deci suma este egală cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{(2n!}{2^n(n!)^3}\right. .}