27020: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
Line 14: Line 14:
  + C_n^2 \cdot C_(n-2)^1\left.\frac{1}{4^2}\right. +  ... = </math>
  + C_n^2 \cdot C_(n-2)^1\left.\frac{1}{4^2}\right. +  ... = </math>
<math display="block"> = \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} C_n^k C_(n-k)^k \cdot \left.\frac{1}{4^k}\right. = n! \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{(k!)^2 (n-k)! 4^k},</math>
<math display="block"> = \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} C_n^k C_(n-k)^k \cdot \left.\frac{1}{4^k}\right. = n! \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{(k!)^2 (n-k)! 4^k},</math>
deci suma este egală cu <math> \left.\frac{(2n!}{2^n(n!)^3}\right. .</math>

Revision as of 17:36, 18 October 2023

27020 (Gheorghe Szöllösy)

Să se calculeze suma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{4^k \cdot (k!)^2 \cdot (n-2k)!}, \quad n \geq 1 }

Soluție:

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n } coeficientul lui Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^n } din rezolvarea lui

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X) = \left(X + \left\lfloor\frac{1}{2}\right\rfloor\right)^{2n} = \left(X(1+X) + \left\lfloor\frac{1}{4}\right\rfloor\right)^n = \sum_{k=0}^n C_n^k X^{(n-k)} \left(\frac{1}{4^k}\right).}

Avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n = \left(\frac{1}{2^n}\right) C_2n^n } , iar pe de altă parte,

deci suma este egală cu