27020: Difference between revisions
Nagy Lenard (talk | contribs) No edit summary |
Nagy Lenard (talk | contribs) No edit summary |
||
| Line 8: | Line 8: | ||
Fie <math> a_n </math> coeficientul lui <math> X^n </math> din rezolvarea lui | Fie <math> a_n </math> coeficientul lui <math> X^n </math> din rezolvarea lui | ||
<math> P(X) = \left(X + \left\lfloor\frac{1}{2}\right\rfloor\right)^{2n} = \left(X(1+X) + \left\lfloor\frac{1}{4}\right\rfloor\right)^n = \sum_{k=0}^n C_n^k X^{(n-k)} \left(\frac{1}{4^k}\right) | <math> P(X) = \left(X + \left\lfloor\frac{1}{2}\right\rfloor\right)^{2n} = \left(X(1+X) + \left\lfloor\frac{1}{4}\right\rfloor\right)^n = \sum_{k=0}^n C_n^k X^{(n-k)} \left(\frac{1}{4^k}\right) | ||
</math>. | </math>. | ||
Revision as of 17:20, 18 October 2023
27020 (Gheorghe Szöllösy)
Să se calculeze suma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{4^k \cdot (k!)^2 \cdot (n-2k)!}, \quad n \geq 1 }
Soluție:
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n } coeficientul lui Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^n } din rezolvarea lui Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X) = \left(X + \left\lfloor\frac{1}{2}\right\rfloor\right)^{2n} = \left(X(1+X) + \left\lfloor\frac{1}{4}\right\rfloor\right)^n = \sum_{k=0}^n C_n^k X^{(n-k)} \left(\frac{1}{4^k}\right) } .